The role of magnesium
A good deal of research has linked magnesium deficiency the most common trace mineral deficiency in the Western world with heart disease. In the 1950s, this association became apparent both in farm animals and then in humans (MS Seelig, Magnesium Deficiency in the Pathogenesis of Disease, Plenum Medical Books, 1980). More than 30 years ago, scientists discovered that magnesium deficiency predisposes one to high cholesterol levels and to an increased ratio of low density lipoprotein to high density lipoprotein These risk factors for heart disease decrease once you begin taking magnesium supplements (Magnesium Bulletin, 1981; 3: 165-77).
Much has been written about the supposed Type A hard driving, achievement oriented personality, who has a greater risk of heart disease than the more laid back Type B. However, what's been discovered is that Type As also have lower red blood cell magnesium levels, suggesting that magnesium may be the main factor behind their increased risk (J Amer Coll Nutr, 1985; 4: 165-72).
Magnesium deficiency also predisposes you to increased clotting tendency in the blood, the most important risk factor in the formation of coronary thrombosis ((Revue Francais Endocrinol Clinique, 1970; 11: 45-54). Besides B vitamins, a deficiency of magnesium is responsible for the build up of homocysteine levels.
Magnesium deficiency is associated with angina (Magnesium, 1984; 3: 46-9), which improves when you take supplements of magnesium.
As with chromium, in industrialised societies the intake of magnesium is low as a result of the refining and processing of foods (J Amer Col Nutr, 1985; 4:195-206).
In the early part of the 20th century there was virtually no coronary artery disease. By the middle of the century it had become the number one killer in the West. But heart disease rose in tandem with the development of the processed food industry and the establishment of intensive farming techniques. As processing became the norm, sugar consumption rose astronomically from 4lbs per person per year to 140 lbs per person per year, an increase of several thousand percent. Refined sugar which contains no added nutrients, requires huge amounts of chromium to process it. The addition of this in our diet must take the blame for the drastic reduction of chromium in the diet.
Water soluble B vitamins are easily destroyed or depleted by food processing and do not occur in refined sugars. In milling wheat into white flour, for example, 50-90 per cent of vitamin B6 is destroyed. Up to half of the content of vitamin B6 is lost in canning meats and fish and up to three quarters of the vitamin is lost in canning vegetables. Anytime a food is refined, prcessed or preserved, one to three quarters of the vitamin B6 content is destroyed.
Increasingly the evidence shows that heart disease is a disease of the industrialised food industry.
!AJohn Mansfield