Just as iron rusts, and an exposed apple or potato will turn brown when its surface meets the air, so do our bodies endure oxidation (ageing), for all of these are examples involving free radical activity. In the same way that the placing of lemon juice on an apple will stop it from turning brown by 'mopping up' the unpaired electrons, thanks to the antioxidant vitamin C in the juice, your body contains numerous antioxidant and free radical deactivating substances (specific enzymes, amino acids, vitamins, minerals, uric acid, etc.). The body can protect itself with these substances by quenching those free radicals which it produces itself, or which are created by radiation or from other sources. At least, it has these defensive substances to hand when it is well nourished. As we will see in Chapter 4, the processes which produce atherosclerosis have much to do with both free radical activity and with the accumulation of obstructive deposits, in which calcium acts as a cement or binding agent.
Free radical activity, now generally accepted to play a large part in the development of atherosclerosis as well as many other forms of damage to the body, including soft tissues, bone surfaces and nerve structures, is often associated with the presence in the body of heavy metals. Chelation can remove these metals before they do their damage. EDTA can also create the situation (low serum calcium, leading to parathyroid hormone production, leading to metastatic calcium removal, etc) which starts the process of dissolution of atheromatous deposits which may be obstructing an artery in an area where free radical damage has already taken place. If such an approach is combined with nutritional patterns which encourage the intake of antioxidant substances (vitamins A, C, E, minerals such as selenium and zinc, etc.) an even better end result should be anticipated.
Dr Elmer Cranton's view
A leading American physician, Elmer Cranton, MD, states his expert view of the importance of using EDTA to counteract the free radical scourge (Cranton and Frackelton 1982):
EDTA can reduce the production of free radicals by a million-fold, for it is not possible for free radical pathology to be catalytically accelerated by metallic ions in the presence of EDTA. Traces of unbound metallic ions are necessary for uncontrolled proliferation of free radicals in living tissue and EDTA binds these ionic metal catalysts making them chemically inert and removing them from the body.
He continues:
Two essential nutritional elements, iron and copper, are the most potent catalysts of lipid peroxidation [the degradation of fats by free radicals]. Catalytic iron and copper accumulate near phospholipid cell membranes, in joint fluid, and in cerebrospinal fluid with age and are released into tissue fluids following trauma or ischaemia [lack of oxygen supply due to circulatory inefficiency]. These unbound extracellular iron and copper ions have been shown to potentiate free radical tissue damage.
We will learn more about free radical activity, the damage caused by toxic heavy metals (and some apparently useful ones such as iron when in excess of requirements) and of the many protective functions of EDTA chelation therapy in relation to both free radical activity and heavy metal toxicity in later chapters, especially Chapter 5.
Chelation demonstration