1. Antioxidants in the prevention of human atherosclerosis.Steinberg, D.
and Workshop ParticipantsCirculation 85:2338-2344 (1992)
2. Antiatherogenic effect of probucol unrelated to itshypocholesterolemic
effect: Evidence that antioxidants invivo can selectively inhibit
low density lipoproteindegradation in macrophage-rich fatty streaks slowing
theprogression of atherosclerosis in the WHHL rabbit.Carew, T. E.; Schwenke,
D. C. and Steinberg, D.Proc. Natl. Acad. Sci. 84:7725-9 (1987)
3. Probucol prevents the progression of atherosclerosis inWatanabe hyperlipidemic
rabbit, an animal model for familialhypercholesterolemia.Kita, T.; Nagano,
Y.; Yokode, M.; et al.Proc. Natl. Acad. Sci. 84:5928-31 (1987)
4. Probucol attenuates the development of aortic atherosclerosisin cholesterol-fed
rabbits.Daugherty, A.; Zweifel, B. S. and Schonfeld, G.Br. J. Pharmacol.
98:612-8 (1989)
5. The antioxidant N,N'diphenyl-phenylenediamine preventsatherosclerosis
in cholesterol-fed rabbits.Sparrow, C.; Doebber, T; Olszewski, J.; et al.Metabolism,
p121 (abstract) (1992)
6. The antioxidant butylated hydroxytoluene protects againstatherosclerosis.Bjorkhem,
I.; Henriksson-Freyschuss, A.; Breuer, O.; et al.Arterioscler. Thromb. 11:15-22
(1991)
7. Effects of d-alpha-tocopherol supplementation onexperimentally induced
primate atherosclerosis.Verlangieri, Anthony J. and Bush, M. J.J. Amer.
Coll. Nutr. 11:131-8 (1992)(Also see:Reversing atherosclerosis: An interview
with Dr. AnthonyVerlangieri.Passwater, Richard A.Whole Foods p27-30 (August
1992)
8. A receptor-mediated pathway for cholesterol homeostasis.Brown, M. S.
and Goldstein J. L.Science 232:34-47 (1986)
9. Binding site on macrophages that mediates uptake anddegradation of acetylated
low-density lipoprotein, producingmassive cholesterol deposition.Goldstein,
J. L.; Ho, Y. K.; Basu, S. K. and Brown, M. S.Proc. Natl. Acad. Sci. 76:333-7
(1979)
10. Enhanced macrophage degradation of low density lipoproteinpreviously
incubated with cultured endothelial cells:Recognition by receptors for acetylated
low densitylipoproteins.Henriksen, T.; Mahoney, E. M. and Steinberg, D.Proc.
Natl. Acad. Sci. 78:6499-6503 (1981)
11. Modification of low density lipoprotein by endothelial cellsinvolves
lipid peroxidation and degradation of low densitylipoprotein phospholipids.Steinbrecher,
U. P.; Parthasarathy, S.; Leake, D. S.;Witztum, J. L. and Steinberg, D.Proc.
Natl. Acad. Sci. 81:3883-7 (1984)
12. Endothelial cell-derived chemotactic activity for mouseperitoneal macrophages
and the effects of modified forms oflow density lipoprotein.Quinn, M. T.;
Parthasarathy, S. and Steinberg, D.Proc. Natl. Acad. Sci. 82:5949-5953 (1985)
13. Oxidatively modified low density lipoproteins: A potentialrole in recruitment
and retention of monocyte/macrophagesduring atherogenesis.Quinn, M. T.;
Parthasarathy, S.; Fong, L. G. andSteinberg, D.Proc. Natl. Acad. Sci. 84:2995-8
(1987)
14. Beyond cholesterol: Modifications of low density lipoproteinthat increase
its atherogenicity.Steinberg, D.; Parthasarathy, S.; Carew, T. E.; Khoo,
J. C.and Witztum, J. L.New Engl. J. Med. 320:915-24 (1989)
15. Enhanced macrophage uptake of low density lipoprotein afterself-aggregation.Khoo,
J. C.; Miller, E.; McLoughlin, P. and Steinberg, D.Arteriosclerosis 8:348-58
(1988)