According to Wikipedia, dichloroacetate decreases lactate production by shifting the metabolism of pyruvate from glycolysis towards oxidation in the mitochondria. That is the reason the substance has been used to treat lactic acidosis. Its use in cancer has only recently been pioneered and the University of Alberta researchers caution that more trials are needed, before DCA can be recommended as an anti-tumor agent.
It is against this background that we should see the discovery of Heinrich Kremer, MD, a German medical doctor who is perhaps best known for his unconventional views on AIDS. Kremer says that the current view, according to which the mitochondria's normal energy production pathway is based on chemical oxidation does not go deep enough to allow an understanding of the underlying mechanisms of cancer.
Kremer's discovery is described in his book The Silent Revolution in Cancer and AIDS, which is due to be published in English later this year. German and Italian versions are already available.
The new view on cancer is explained in detail in an article titled The Secret of Cancer: Short-circuit in the Photon Switch, due for publication shortly. I will link it here as soon as it becomes available. Meanwhile, here is a sneak preview.
- - -
Cancer and ATP: The Photon Energy Pathway
(for the full article, we must await publication in the July issue of Townsend Letter for Doctors)
Although the mutation theory of oncogenesis is generally accepted today, it does not explain how cancer cells seemingly are able to evade all the body's normal mechanisms that prevent and correct such mutations, and how they can invade and metastasize in different tissues from those that are primarily concerned.
Consequently, our standard therapies, which are based on the assumption that the deviated cells must be destroyed and which attempt to do so by a slash, burn and poison approach operated by the surgeon, the radiologist and the oncologist, are of little use in prolonging the patient's life or effecting real cures.
Evolution
To understand the new concept of oncogenesis, we must take a look at the evolution of cells and organisms. Cells as present in today's organisms are the result of a fusion, in prehistoric times, of two different types of unicellular life forms into a unique symbiotic combination. A type of cell of the archaea family and another type of the bacteria family entered into symbiosis and formed what is now known as a protist. The cells of mammals including humans today contain genes from both original families. The bacterial symbionts have evolved into the mitochondria which are delegated to take care of energy production.